KIT: Batterieforschungscluster für nachhaltige und sichere Batterien

Zu sehen sind zwei Forschende im Labor der neuen Batterieforschungscluster.Foto: Laila Tkotz, KIT
Die Forscherinnen und Forscher vom KIT wollen ein verbessertes Verständnis des Lebenszyklus von Lithium-Ionen-Batterien erlangen.
Recycling und optimierte Rohstoffkreisläufe, Zweitnutzung und ein wissensbasiertes Zelldesign sollen Lithium-Ionen-Batterien zukünftig nachhaltiger und sicherer machen. Wissenschaftlerinnen und Wissenschaftler vom Karlsruher Institut für Technologie (KIT) wollen in neu geschaffenen Batterieforschungsclustern die Grundlagen dafür schaffen.

Die neuen Forschungsprojekte sind Teil der vom Bundesministerium für Bildung und Forschung neu geschaffenen Batterieforschungscluster „greenBatt“ und „BattNutzung“. Ein Forschungsbereich betrifft die Second-Life-Nutzung. Batteriezellen mit einer dauerhaft hohen Leistungsfähigkeit können den ökologischen Fußabdruck von Anwendungen wie der Elektromobilität erheblich verringern. Denkbar ist es auch, solche Zellen nach Gebrauch weiter zu nutzen, etwa in großen Netzspeicherverbunden. Doch nicht alle Zellen sind für solche „Second-Life-Szenarien“ geeignet, der Langzeitbetrieb erfordert das perfekte Zusammenspiel zahlreicher Komponenten und Materialien: „Beim dauerhaften Laden und Entladen einer Batterie finden unweigerlich auch unerwünschte Seitenreaktionen statt“, sagt Hans Jürgen Seifert vom Institut für Angewandte Materialien – Angewandte Werkstoffphysik des KIT. „Wenn das ihr Verhalten nachteilig beeinflusst, spricht man von Degradation oder Alterung. Man kann sie nicht ganz verhindern, aber durch ein entsprechendes Zelldesign verzögern und abmildern.“

Degradation verstehen und steuern

Ein besseres Verständnis der Degradationsprozesse hilft auch dabei, verlässlichere Lebensdauerprognosen für Lithium-Ionen-Zellen zu erstellen. Entsprechende Testreihen sind aber äußerst zeitaufwendig. „Als Lösung werden Testverfahren benötigt, in denen die Alterung beschleunigt abläuft“, sagt Thomas Wetzel vom Institut für Thermische Verfahrenstechnik. „Der Wohlfühlbereich der Zellen liegt bei etwa 25 Grad Celsius. Wenn man sie Hitze oder Kälte aussetzt, altern sie deutlich schneller.“ Die Komplexität der Alterungsprozesse und der thermischen Bedingungen in den Zellen machen es bislang aber schwierig, Ergebnisse beschleunigter Prüfverfahren auf konventionelle Verfahren zu übertragen. Wetzel und sein Team identifizieren nun geeignete Bedingungen und Parameter, die möglichst wenig zusätzliche Alterungsmechanismen auslösen und sich deshalb als Marker eignen. Mit Hilfe dieses „thermischen Fingerabdrucks“ einer Batteriezelle soll es möglich werden, die Alterung auch in beschleunigten Testreihen verlässlich vorherzusagen.

Neue Ansätze für das Batterierecycling

Ein weiterer Schwerpunkt der neuen Batterieforschungscluster sind ein recyclinggerechtes Batteriedesign sowie die Weiterentwicklung von Recyclingverfahren und Rohstoffkreisläufen. „Derzeit existieren zwei Verfahrenswege zum Recycling von Lithiumbatterien. Beim pyrometallurgischen Ansatz werden die Zellen bei hohen Temperaturen eingeschmolzen. Das ist robust und sicher, die erreichbare Recyclingquote ist jedoch begrenzt“, erklärt Hermann Nirschl vom Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT. „Potenziell höhere Recyclingquoten versprechen die mechanischen Ansätze, also das Zerkleinern und Sortieren. Diese sind aber grundsätzlich mit höheren Sicherheitsrisiken behaftet, und die Materialtrennung ist bislang nur mäßig selektiv.“

Batteriesysteme intelligent überwachen

Neben der Nachhaltigkeit steht auch die Sicherheit von Batteriesystemen im Fokus der Arbeit der Batterieforschungscluster. Sicherheitskritische Defekte auf Zellebene ereignen sich zwar nur selten, können aber schwere Folgen haben – wie etwa beim Lithium-Plating: „Ausgelöst wird der Effekt durch die Anlagerung von metallischem Lithium in der Anode“, erklärt Ulrike Krewer vom Institut für Angewandte Materialien – Werkstoffe der Elektrotechnik. „Das kann zu einem massiven Kapazitätsverlust führen, im Extremfall auch zu Kurzschlüssen oder sogar zu einem Zellbrand.“ Damit es nicht so weit kommt, könnte man Zellen während des Betriebs überwachen und prüfen. Allerdings wurden solche Online-Verfahren bislang vor allem im Labor eingesetzt und sind auf Systemebene wenig sensitiv. Krewer und ihr Team entwickeln nun verbesserte Analysealgorithmen für die Praxis. „Dabei berücksichtigen wir nichtlineare Vorgänge beim Betrieb einer Batterie, diese Daten wurden bislang kaum zur Diagnose genutzt“, so Krewer.

21.1.2021 | Quelle: KIT | solarserver.de © Solarthemen Media GmbH

Beliebte Artikel

Schließen